
audiotsm Documentation
Release 0.1.2

Author

Sep 21, 2017

Contents

1 Installation 3

2 Basic usage 5

3 Thanks 7

4 Indices and tables 9

5 Time-Scale Modification 11
5.1 Time-Scale Modification procedures . 11
5.2 TSM Object . 13

6 Readers and Writers 15
6.1 Numpy arrays . 15
6.2 Wav files . 16
6.3 Play in real-time . 17
6.4 Implementing your own . 17

7 Gstreamer plugins 19
7.1 OLA . 20
7.2 WSOLA . 20
7.3 Phase Vocoder . 21

8 Internal API 23
8.1 Analysis-Synthesis based TSM procedures . 23
8.2 Circular buffers . 25
8.3 Window functions . 27
8.4 Gstreamer filters . 28

Python Module Index 31

i

ii

audiotsm Documentation, Release 0.1.2

AudioTSM is a python library for real-time audio time-scale modification procedures, i.e. algorithms that change the
speed of an audio signal without changing its pitch.

Documentation: https://audiotsm.readthedocs.io/

Examples: https://muges.github.io/audiotsm/

Source code repository and issue tracker: https://github.com/Muges/audiotsm/

Python Package Index: https://pypi.python.org/pypi/audiotsm/

License: MIT – see the file LICENSE for details.

Contents 1

https://audiotsm.readthedocs.io/
https://muges.github.io/audiotsm/
https://github.com/Muges/audiotsm/
https://pypi.python.org/pypi/audiotsm/

audiotsm Documentation, Release 0.1.2

2 Contents

CHAPTER 1

Installation

Audiotsm should work with python 2.7 and python 3.4+.

You can install the latest version of audiotsm with pip:

pip install audiotsm

If you want to use the gstreamer plugins, you should install PyGObject and python-gst, and use the following command
to install audiotsm:

pip install audiotsm[gstreamer]

If you want to play the output of the TSM procedures in real time, or to use the examples, you should install audiotsm
as follow:

pip install audiotsm[stream]

3

https://pygobject.readthedocs.io/en/latest/getting_started.html
https://gstreamer.freedesktop.org/modules/gst-python.html

audiotsm Documentation, Release 0.1.2

4 Chapter 1. Installation

CHAPTER 2

Basic usage

The audiotsm package implements several time-scale modification procedures:

• OLA (Overlap-Add);

• WSOLA (Waveform Similarity-based Overlap-Add);

• Phase Vocoder.

The OLA procedure should only be used on percussive audio signals. The WSOLA and the Phase Vocoder procedures
are improvements of the OLA procedure, and should both give good results in most cases.

If you are unsure which procedure to choose, the Phase Vocoder should sound best in most cases. You can listen to
the output of the different procedures on various audio files and at various speeds on the examples page.

Below is a basic example showing how to reduce the speed of a wav file by half using the WSOLA procedure:

from audiotsm import phasevocoder
from audiotsm.io.wav import WavReader, WavWriter

with WavReader(input_filename) as reader:
with WavWriter(output_filename, reader.channels, reader.samplerate) as writer:

tsm = phasevocoder(reader.channels, speed=0.5)
tsm.run(reader, writer)

5

https://muges.github.io/audiotsm/

audiotsm Documentation, Release 0.1.2

6 Chapter 2. Basic usage

CHAPTER 3

Thanks

If you are interested in time-scale modification procedures, I highly recommend reading A Review of Time-Scale
Modification of Music Signals by Jonathan Driedger and Meinard Müller.

7

http://www.mdpi.com/2076-3417/6/2/57
http://www.mdpi.com/2076-3417/6/2/57

audiotsm Documentation, Release 0.1.2

8 Chapter 3. Thanks

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

audiotsm Documentation, Release 0.1.2

10 Chapter 4. Indices and tables

CHAPTER 5

Time-Scale Modification

Time-Scale Modification procedures

The audiotsm module provides several time-scale modification procedures:

• ola() (Overlap-Add);

• wsola() (Waveform Similarity-based Overlap-Add);

• phasevocoder() (Phase Vocoder).

The OLA procedure should only be used on percussive audio signals. The WSOLA and the Phase Vocoder procedures
are improvements of the OLA procedure, and should both give good results in most cases.

Note: If you are unsure which procedure and parameters to choose, using phasevocoder() with the default
parameters should give good results in most cases. You can listen to the output of the different procedures on various
audio files and at various speeds on the examples page.

Each of the function of this module returns a TSM object which implements a time-scale modification procedure.

audiotsm.ola(channels, speed=1.0, frame_length=256, analysis_hop=None, synthesis_hop=None)
Returns a TSM object implementing the OLA (Overlap-Add) time-scale modification procedure.

In most cases, you should not need to set the frame_length, the analysis_hop or the synthesis_hop.
If you want to fine tune these parameters, you can check the documentation of the AnalysisSynthesisTSM
class to see what they represent.

Parameters

• channels (int) – the number of channels of the input signal.

• speed (float, optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal will be half as fast as the
input signal).

• frame_length (int, optional) – the length of the frames.

11

https://muges.github.io/audiotsm/
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int

audiotsm Documentation, Release 0.1.2

• analysis_hop (int, optional) – the number of samples between two consecutive
analysis frames (speed * synthesis_hop by default). If analysis_hop is set, the
speed parameter will be ignored.

• synthesis_hop (int, optional) – the number of samples between two consecutive
synthesis frames (frame_length // 2 by default).

Returns a audiotsm.base.tsm.TSM object

audiotsm.wsola(channels, speed=1.0, frame_length=1024, analysis_hop=None, synthesis_hop=None,
tolerance=None)

Returns a TSM object implementing the WSOLA (Waveform Similarity-based Overlap-Add) time-scale modi-
fication procedure.

In most cases, you should not need to set the frame_length, the analysis_hop, the synthesis_hop,
or the tolerance. If you want to fine tune these parameters, you can check the documentation of the
AnalysisSynthesisTSM class to see what the first three represent.

WSOLA works in the same way as OLA, with the exception that it allows slight shift (at most tolerance) of
the position of the analysis frames.

Parameters

• channels (int) – the number of channels of the input signal.

• speed (float, optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal will be half as fast as the
input signal).

• frame_length (int, optional) – the length of the frames.

• analysis_hop (int, optional) – the number of samples between two consecutive
analysis frames (speed * synthesis_hop by default). If analysis_hop is set, the
speed parameter will be ignored.

• synthesis_hop (int, optional) – the number of samples between two consecutive
synthesis frames (frame_length // 2 by default).

• tolerance (int) – the maximum number of samples that the analysis frame can be
shifted.

Returns a audiotsm.base.tsm.TSM object

audiotsm.phasevocoder(channels, speed=1.0, frame_length=2048, analysis_hop=None, synthe-
sis_hop=None)

Returns a TSM object implementing the phase vocoder time-scale modification procedure.

In most cases, you should not need to set the frame_length, the analysis_hop or the synthesis_hop.
If you want to fine tune these parameters, you can check the documentation of the AnalysisSynthesisTSM
class to see what they represent.

Parameters

• channels (int) – the number of channels of the input signal.

• speed (float, optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal will be half as fast as the
input signal).

• frame_length (int, optional) – the length of the frames.

• analysis_hop (int, optional) – the number of samples between two consecutive
analysis frames (speed * synthesis_hop by default). If analysis_hop is set, the
speed parameter will be ignored.

12 Chapter 5. Time-Scale Modification

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

audiotsm Documentation, Release 0.1.2

• synthesis_hop (int, optional) – the number of samples between two consecutive
synthesis frames (frame_length // 4 by default).

Returns a audiotsm.base.tsm.TSM object

TSM Object

The audiotsm.base.tsm module provides an abstract class for real-time audio time-scale modification proce-
dures.

class audiotsm.base.tsm.TSM
An abstract class for real-time audio time-scale modification procedures.

If you want to use a TSM object to run a TSM procedure on a signal, you should use the run() method in most
cases.

clear()
Clears the state of the TSM object, making it ready to be used on another signal (or another part of a signal).

This method should be called before processing a new file, or seeking to another part of a signal.

flush_to(writer)
Writes as many output samples as possible to writer, assuming that there are no remaining samples that
will be added to the input (i.e. that the write_to() method will not be called), and returns the number
of samples that were written.

Parameters writer – a audiotsm.io.base.Writer.

Returns

a tuple (n, finished), with:

• n the number of samples that were written to writer

• finished a boolean that is True when there are no samples remaining to flush.

Return type (int, bool)

get_max_output_length(input_length)
Returns the maximum number of samples that will be written to the output given the numver of samples
of the input.

Parameters input_length (int) – the number of samples of the input.

Returns the maximum number of samples that will be written to the output.

read_from(reader)
Reads as many samples as possible from reader, processes them, and returns the number of samples that
were read.

Parameters reader – a audiotsm.io.base.Reader.

Returns the number of samples that were read from reader.

run(reader, writer, flush=True)
Runs the TSM procedure on the content of reader and writes the output to writer.

Parameters

• reader – a audiotsm.io.base.Reader.

• writer – a audiotsm.io.base.Writer.

• flush (bool, optional) – True if there is no more data to process.

5.2. TSM Object 13

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

audiotsm Documentation, Release 0.1.2

set_speed(speed)
Sets the speed ratio.

Parameters speed (float) – the speed ratio by which the speed of the signal will be multi-
plied (for example, if speed is set to 0.5, the output signal will be half as fast as the input
signal).

write_to(writer)
Writes as many result samples as possible to writer.

Parameters writer – a audiotsm.io.base.Writer.

Returns

a tuple (n, finished), with:

• n the number of samples that were written to writer

• finished a boolean that is True when there are no samples remaining to write. In this
case, the read_from() method should be called to add new input samples, or, if there
are no remaining input samples, the flush_to() method should be called to get the last
output samples.

Return type (int, bool)

14 Chapter 5. Time-Scale Modification

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

CHAPTER 6

Readers and Writers

TSM objects use Reader objects as input and Writer objects as output.

The audiotsm.io package provides Readers and Writers allowing to use numpy arrays or wav files as input or
output of a TSM , to play the output in real-time, as well as base classes to implement your own Readers and Writers.

Numpy arrays

The audiotsm.io.array module provides a Reader and Writers allowing to use a numpy.ndarray as input or
output of a TSM object.

class audiotsm.io.array.ArrayReader(data)
Bases: audiotsm.io.base.Reader

A Reader allowing to use numpy.ndarray as input of a TSM object.

Parameters data (numpy.ndarray) – a matrix of shape (m, n), with m the number of channels
and n the length of the buffer, where the samples will be read.

class audiotsm.io.array.ArrayWriter(channels)
Bases: audiotsm.io.base.Writer

A Writer allowing to get the output of a TSM object as a numpy.ndarray.

Writing to an ArrayWriter will add the data at the end of the data attribute.

Parameters channels (int) – the number of channels of the signal.

data
A numpy.ndarray of shape (m, n), with m the number of channels and n the length of the data, where
the samples have written.

class audiotsm.io.array.FixedArrayWriter(data)
Bases: audiotsm.io.base.Writer

A Writer allowing to use numpy.ndarray as output of a TSM object.

15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

audiotsm Documentation, Release 0.1.2

Contrary to an ArrayWriter, a FixedArrayWriter takes the buffer in which the data will be written as
a parameter of its constructor. The buffer is of fixed size, and it will not be possible to write more samples to the
FixedArrayWriter than the buffer can contain.

Parameters data (numpy.ndarray) – a matrix of shape (m, n), with m the number of channels
and n the length of the buffer, where the samples will be written.

Wav files

The audiotsm.io.wav module provides a Reader and a Writer allowing to use wav files as input or output of
a TSM object.

class audiotsm.io.wav.WavReader(filename)
Bases: audiotsm.io.base.Reader

A Reader allowing to use a wav file as input of a TSM object.

You should close the WavReader after using it with the close() method, or use it in a with statement as
follow:

with WavReader(filename) as reader:
use reader...

Parameters filename (str) – the name of an existing wav file.

close()
Close the wav file.

samplerate
The samplerate of the wav file.

samplewidth
The sample width in bytes of the wav file.

class audiotsm.io.wav.WavWriter(filename, channels, samplerate)
Bases: audiotsm.io.base.Writer

A Writer allowing to use a wav file as output of a TSM object.

You should close the WavWriter after using it with the close() method, or use it in a with statement as
follow:

with WavWriter(filename, 2, 44100) as writer:
use writer...

Parameters

• filename (str) – the name of the wav file (it will be overwritten if it already exists).

• channels (int) – the number of channels of the signal.

• samplerate (int) – the sampling rate of the signal.

close()
Close the wav file.

16 Chapter 6. Readers and Writers

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

audiotsm Documentation, Release 0.1.2

Play in real-time

The audiotsm.io.stream module provides a Writer allowing to play the output of a TSM object in real-time.

class audiotsm.io.stream.StreamWriter(channels, samplerate, **attrs)
Bases: audiotsm.io.base.Writer

A Writer allowing to play the output of a TSM object directly.

You should stop the StreamWriter after using it with the stop() method, or use it in a with statement as
follow:

with WavWriter(2, 44100) as writer:
use writer...

Parameters

• channels (int) – the number of channels of the signal.

• samplerate (int) – the sampling rate of the signal.

• attrs – additional parameters used to create the sounddevice.OutputStream that
is used by the StreamWriter.

stop()
Stop the stream.

Implementing your own

The audiotsm.io.base module provides base classes for the input and output of TSM objects.

class audiotsm.io.base.Reader
An abstract class for the input of a TSM object.

channels
The number of channels of the Reader.

empty
True if there is no more data to read.

read(buffer)
Reads as many samples from the Reader as possible, write them to buffer, and returns the number of
samples that were read.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be written.

Returns the number of samples that were read. It should always be equal to the length of the
buffer, except when there is no more values to be read.

Raises ValueError – if the Reader and the buffer do not have the same number of channels

skip(n)
Try to skip n samples, an returns the number of samples that were actually skipped.

class audiotsm.io.base.Writer
An abstract class for the output of a TSM object.

6.3. Play in real-time 17

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://python-sounddevice.readthedocs.io/en/latest/index.html#sounddevice.OutputStream
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError

audiotsm Documentation, Release 0.1.2

channels
The number of channels of the Writer.

write(buffer)
Write as many samples from the Writer as possible from buffer, and returns the number of samples
that were written.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be read.

Returns the number of samples that were written. It should always be equal to the length of the
buffer, except when there is no more space in the Writer.

Raises ValueError – if the Writer and the buffer do not have the same number of channels

18 Chapter 6. Readers and Writers

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError

CHAPTER 7

Gstreamer plugins

The audiotsm.gstreamer module implements three audio filters allowing to use the TSM procedures with
gstreamer:

• audiotsm-ola, defined in the audiotsm.gstreamer.ola module;

• audiotsm-wsola, defined in the audiotsm.gstreamer.wsola module;

• audiotsm-phase-vocoder, defined in the audiotsm.gstreamer.phasevocoder module.

Note: If you are unsure which filter to choose, using audiotsm-phase-vocoder should give good results in
most cases. You can listen to the output of the different procedures on various audio files and at various speeds on the
examples page.

In order to use these audio filters, you should first import the module corresponding to the TSM procedure you want
to use, for example:

import audiotsm.gstreamer.phasevocoder

Then, you should create the audio filter with Gst.ElementFactory.make, as follow:

tsm = Gst.ElementFactory.make("audiotsm-phase-vocoder")

You should then create a gstreamer pipeline using the audio filter you created. See examples/
audiotsmcli_gst.py for an example of pipeline.

The audio filters work in the same manner as the scaletempo gstreamer plugin. You can change the playback rate
by sending a seek event to the pipeline:

speed = 0.5
pipeline.seek(speed, Gst.Format.BYTES, Gst.SeekFlags.FLUSH,

Gst.SeekType.NONE, -1, Gst.SeekType.NONE, -1)

The other parameters of the TSM procedure are available as properties, as documented for each of the procedures
below.

19

https://muges.github.io/audiotsm/

audiotsm Documentation, Release 0.1.2

OLA

The audiotsm.gstreamer.ola module implements an audio filter allowing to use the OLA procedure with
gstreamer.

class audiotsm.gstreamer.ola.OLA
Bases: audiotsm.gstreamer.base.GstTSM

OLA gstreamer audio filter.

frame_length = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The length of the frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

plugin_name = ‘audiotsm-ola’
The plugin name, to be used in Gst.ElementFactory.make.

synthesis_hop = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

WSOLA

The audiotsm.gstreamer.wsola module implements an audio filter allowing to use the WSOLA procedure
with gstreamer.

class audiotsm.gstreamer.wsola.WSOLA
Bases: audiotsm.gstreamer.base.GstTSM

WSOLA gstreamer audio filter.

frame_length = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The length of the frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

plugin_name = ‘audiotsm-wsola’
The plugin name, to be used in Gst.ElementFactory.make.

synthesis_hop = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

tolerance = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The maximum number of samples that the analysis frame can be shifted.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

20 Chapter 7. Gstreamer plugins

audiotsm Documentation, Release 0.1.2

Phase Vocoder

The audiotsm.gstreamer.phasevocoder module implements an audio filter allowing to use the phase
vocoder procedure with gstreamer.

class audiotsm.gstreamer.phasevocoder.PhaseVocoder
Bases: audiotsm.gstreamer.base.GstTSM

Phase vocoder gstreamer audio filter.

frame_length = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The length of the frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

plugin_name = ‘audiotsm-phase-vocoder’
The plugin name, to be used in Gst.ElementFactory.make.

synthesis_hop = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

tolerance = <Mock name=’mock.GObject.Property()’ id=‘139902991820952’>
The maximum number of samples that the analysis frame can be shifted.

This is a write-only attribute, that will only take effect the next time the audio filter is setup (usually on the
next song).

7.3. Phase Vocoder 21

audiotsm Documentation, Release 0.1.2

22 Chapter 7. Gstreamer plugins

CHAPTER 8

Internal API

Analysis-Synthesis based TSM procedures

The audiotsm.base.analysis_synthesis module provides a base class for real-time analysis-synthesis
based audio time-scale modification procedures.

class audiotsm.base.analysis_synthesis.AnalysisSynthesisTSM(converter, channels,
frame_length, analy-
sis_hop, synthesis_hop,
analysis_window,
synthesis_window,
delta_before=0,
delta_after=0)

A audiotsm.base.tsm.TSM for real-time analysis-synthesis based time-scale modification procedures.

The basic principle of an analysis-synthesis based TSM procedure is to first decompose the input signal into
short overlapping frames, called the analysis frames. The frames have a fixed length frame_length, and are
separated by analysis_hop samples, as illustrated below:

<--------frame_length--------><-analysis_hop->
Frame 1: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 2: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 3: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
...

It then relocates the frames on the time axis by changing the distance between them (to synthesis_hop), as
illustrated below:

<--------frame_length--------><----synthesis_hop---->
Frame 1: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 2: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 3: [~~~~~~~~~~~~~~~~~~~~~~~~~~
→˓~~]
...

23

audiotsm Documentation, Release 0.1.2

This changes the speed of the signal by the ratio analysis_hop / synthesis_hop (for example, if the
synthesis_hop is twice the analysis_hop, the output signal will be half as fast as the input signal).

However this simple method introduces artifacts to the signal. These artifacts can be reduced by modifying the
analysis frames by various methods. This is done by a converter object, which converts the analysis frames
into modified frames called the synthesis frames.

To further reduce the artifacts, window functions (the analysis_window and the synthesis_window)
can be applied to the analysis frames and the synthesis frames in order to smooth the signal.

Some TSM procedures (e.g. WSOLA-like methods) may need to have access to some samples preceeding or
following an analysis frame to generate the synthesis frame. The delta_before and delta_after parameters allow
to specify the numbers of samples needed before and after the analysis frame, so that they are available to the
converter.

For more details on Time-Scale Modification procedures, I recommend reading “A Review of Time-Scale Mod-
ification of Music Signals” by Jonathan Driedger and Meinard Müller.

Parameters

• converter (Converter) – an object that implements the conversion of the analysis
frames into synthesis frames.

• channels (int) – the number of channels of the input signal.

• frame_length (int) – the length of the frames.

• analysis_hop (int) – the number of samples between two consecutive analysis frames.

• synthesis_hop (int) – the number of samples between two consecutive synthesis
frames.

• analysis_window (numpy.ndarray) – a window applied to the analysis frames

• synthesis_window (numpy.ndarray) – a window applied to the synthesis frames

• delta_before (int) – the number of samples preceding an analysis frame that the con-
verter requires (this is usually 0, except for WSOLA-like methods)

• delta_after (int) – the number of samples following an analysis frame that the con-
verter requires (this is usually 0, except for WSOLA-like methods)

class audiotsm.base.analysis_synthesis.Converter
A base class for objects implementing the conversion of analysis frames into synthesis frames.

clear()
Clears the state of the Converter, making it ready to be used on another signal (or another part of a signal).
It is called by the clear() method and the constructor of AnalysisSynthesisTSM .

convert_frame(analysis_frame)
Converts an analysis frame into a synthesis frame.

Parameters analysis_frame (numpy.ndarray) – a matrix of shape (m,
delta_before + frame_length + delta_after), with m the number of
channels, containing the analysis frame and some samples before and after (as specified by
the delta_before and delta_after parameters of the AnalysisSynthesisTSM
calling the Converter).

analysis_frame[:, delta_before:-delta_after] contains the actual anal-
ysis frame (without the samples preceeding and following it).

Returns a synthesis frame represented as a numpy.ndarray of shape (m, frame_length),
with m the number of channels.

24 Chapter 8. Internal API

http://www.mdpi.com/2076-3417/6/2/57
http://www.mdpi.com/2076-3417/6/2/57
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

audiotsm Documentation, Release 0.1.2

set_analysis_hop(analysis_hop)
Change the value of the analysis hop. This is called by the set_speed() method.

Circular buffers

The audiotsm.utils module provides utility functions and classes used in the implementation of time-scale
modification procedures.

class audiotsm.utils.CBuffer(channels, max_length)
A CBuffer is a circular buffer used to store multichannel audio data.

It can be seen as a variable-size buffer whose length is bounded by max_length. The CBuffer.write()
and CBuffer.right_pad() methods allow to add samples at the end of the buffer, while the CBuffer.
read() and CBuffer.remove() methods allow to remove samples from the beginning of the buffer.

Contrary to the samples added by the CBuffer.write() and CBuffer.read_from(), those added by
the CBuffer.right_pad() method are considered not to be ready to be read. Effectively, this means that
they can be modified by the CBuffer.add() and CBuffer.divide() methods, but have to be marked as
ready to be read with the CBuffer.set_ready() method before being read with the CBuffer.peek(),
CBuffer.read(), or CBuffer.write_to() methods.

Parameters

• channels (int) – the number of channels of the buffer.

• max_length (int) – the maximum length of the buffer (i.e. the maximum number of
samples that can be stored in each channel).

add(buffer)
Adds a buffer element-wise to the CBuffer.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer.

Raises ValueError – if the CBuffer and the buffer do not have the same number of
channels or the CBuffer is smaller than the buffer (self.length < n).

divide(array)
Divides each channel of the CBuffer element-wise by the array.

Parameters array (numpy.ndarray) – an array of shape (n,).

Raises ValueError – if the length of the CBuffer is smaller than the length of the array
(self.length < n).

length
The number of samples of each channel of the CBuffer.

peek(buffer)
Reads as many samples from the CBuffer as possible, without removing them from the CBuffer,
writes them to the buffer, and returns the number of samples that were read.

The samples need to be marked as ready to be read with the CBuffer.set_ready() method in order
to be read. This is done automatically by the CBuffer.write() and CBuffer.read_from()
methods.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be written.

Returns the number of samples that were read from the CBuffer.

8.2. Circular buffers 25

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

audiotsm Documentation, Release 0.1.2

Raises ValueError – if the CBuffer and the buffer do not have the same number of
channels.

read(buffer)
Reads as many samples from the CBuffer as possible, removes them from the CBuffer, writes them
to the buffer, and returns the number of samples that were read.

The samples need to be marked as ready to be read with the CBuffer.set_ready() method in order
to be read. This is done automatically by the CBuffer.write() and CBuffer.read_from()
methods.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be written.

Returns the number of samples that were read from the CBuffer.

Raises ValueError – if the CBuffer and the buffer do not have the same number of
channels.

read_from(reader)
Reads as many samples as possible from reader, writes them to the CBuffer, and returns the number
of samples that were read.

The written samples are marked as ready to be read.

Parameters reader – a audiotsm.io.base.Reader.

Returns the number of samples that were read from reader.

Raises ValueError – if the CBuffer and reader do not have the same number of chan-
nels.

ready
The number of samples that can be read.

remaining_length
The number of samples that can be added to the CBuffer.

remove(n)
Removes the first n samples of the CBuffer, preventing them to be read again, and leaving more space
for new samples to be written.

Parameters n (int) – the number of samples to remove.

Returns the number of samples that were removed.

right_pad(n)
Add zeros at the end of the CBuffer.

The added samples are not marked as ready to be read. The CBuffer.set_ready() will need to be
called in order to be able to read them.

Parameters n (int) – the number of zeros to add.

Raises ValueError – if there is not enough space to add the zeros.

set_ready(n)
Mark the next n samples as ready to be read.

Parameters n (int) – the number of samples to mark as ready to be read.

Raises ValueError – if there is less than n samples that are not ready yet.

to_array()
Returns an array containing the same data as the CBuffer.

26 Chapter 8. Internal API

https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/exceptions.html#ValueError

audiotsm Documentation, Release 0.1.2

Returns a numpy.ndarray of shape (m, n), with m the number of channels and n the length
of the buffer.

write(buffer)
Writes as many samples from the buffer to the CBuffer as possible, and returns the number of samples
that were read.

The written samples are marked as ready to be read.

Parameters buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be read.

Returns the number of samples that were written to the CBuffer.

Raises ValueError – if the CBuffer and the buffer do not have the same number of
channels.

write_to(writer)
Writes as many samples as possible to writer, deletes them from the CBuffer, and returns the number
of samples that were written.

The samples need to be marked as ready to be read with the CBuffer.set_ready() method in order
to be read. This is done automatically by the CBuffer.write() and CBuffer.read_from()
methods.

Parameters writer – a audiotsm.io.base.Writer.

Returns the number of samples that were written to writer.

Raises ValueError – if the CBuffer and writer do not have the same number of chan-
nels.

class audiotsm.utils.NormalizeBuffer(length)
A NormalizeBuffer is a mono-channel circular buffer, used to normalize audio buffers.

Parameters length (int) – the length of the NormalizeBuffer.

add(window)
Adds a window element-wise to the NormalizeBuffer.

Parameters window (numpy.ndarray) – an array of shape (n,).

Raises ValueError – if the window is larger than the buffer (n > self.length).

length
The length of the CBuffer.

remove(n)
Removes the first n values of the NormalizeBuffer.

Parameters n (int) – the number of values to remove.

to_array(start=0, end=None)
Returns an array containing the same data as the NormalizeBuffer, from index start (included) to
index end (exluded).

Returns numpy.ndarray

Window functions

The audiotsm.utils.windows module contains window functions used for digital signal processing.

8.3. Window functions 27

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.6/library/exceptions.html#ValueError
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

audiotsm Documentation, Release 0.1.2

audiotsm.utils.windows.apply(buffer, window)
Applies a window to a buffer.

Parameters

• buffer (numpy.ndarray) – a matrix of shape (m, n), with m the number of channels
and n the length of the buffer.

• window – a numpy.ndarray of shape (n,).

audiotsm.utils.windows.hanning(length)
Returns a periodic Hanning window.

Contrary to numpy.hanning(), which returns the symetric Hanning window, hanning() returns a peri-
odic Hanning window, which is better for spectral analysis.

Parameters length (int) – the number of points of the Hanning window

Returns the window as a numpy.ndarray of shape (length,).

audiotsm.utils.windows.product(window1, window2)
Returns the product of two windows.

Parameters

• window1 – a numpy.ndarray of shape (n,) or None.

• window2 – a numpy.ndarray of shape (n,) or None.

Returns the product of the two windows. If one of the windows is equal to None, the other is
returned, and if the two are equal to None, None is returned.

Gstreamer filters

The base module provides a base class for gstreamer plugin using TSM objects.

class audiotsm.gstreamer.base.GstTSM
Gstreamer TSM plugin.

Subclasses should implement the create_tsm() method and provide two class attributes:

•__gstmetadata__ = (longname, classification, description, author). See
the documentation of the gst_element_class_set_metadata function for more details.

•plugin_name, the name of the plugin.

Calling the register() class method on a subclass will register it, enabling you to instantiate an audio filter
with Gst.ElementFactory.make(plugin_name).

create_tsm(channels)
Returns the TSM object used by the audio filter.

do_sink_event(event)
Sink pad event handler.

do_transform(in_buffer, out_buffer)
Run the data of in_buffer through the TSM object and write the output to out_buffer.

Parameters

• in_buffer – a Gst.Buffer containing the input data.

• out_buffer – a Gst.Buffer where the output data will be written.

28 Chapter 8. Internal API

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.hanning.html#numpy.hanning
https://docs.python.org/3.6/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/GstElement.html#gst-element-class-set-metadata

audiotsm Documentation, Release 0.1.2

do_transform_size(direction, caps, size, othercaps)
Returns the size of the output buffer given the size of the input buffer.

classmethod plugin_init(plugin)
Initialize the plugin.

classmethod register()
Register the plugin.

Register the plugin to make it possible to instantiate it with Gst.ElementFactory.make.

audiotsm.gstreamer.base.audioformatinfo_to_dtype(info)
Return the data type corresponding to a GstAudio.AudioFormatInfo object.

Parameters info – a GstAudio.AudioFormatInfo.

Returns the corresponding data type, to be used in numpy functions.

8.4. Gstreamer filters 29

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

audiotsm Documentation, Release 0.1.2

30 Chapter 8. Internal API

Python Module Index

a
audiotsm, 11
audiotsm.base.analysis_synthesis, 23
audiotsm.base.tsm, 13
audiotsm.gstreamer, 19
audiotsm.gstreamer.base, 28
audiotsm.gstreamer.ola, 20
audiotsm.gstreamer.phasevocoder, 21
audiotsm.gstreamer.wsola, 20
audiotsm.io, 15
audiotsm.io.array, 15
audiotsm.io.base, 17
audiotsm.io.stream, 17
audiotsm.io.wav, 16
audiotsm.utils, 25
audiotsm.utils.windows, 27

31

audiotsm Documentation, Release 0.1.2

32 Python Module Index

Index

A
add() (audiotsm.utils.CBuffer method), 25
add() (audiotsm.utils.NormalizeBuffer method), 27
AnalysisSynthesisTSM (class in au-

diotsm.base.analysis_synthesis), 23
apply() (in module audiotsm.utils.windows), 27
ArrayReader (class in audiotsm.io.array), 15
ArrayWriter (class in audiotsm.io.array), 15
audioformatinfo_to_dtype() (in module au-

diotsm.gstreamer.base), 29
audiotsm (module), 11
audiotsm.base.analysis_synthesis (module), 23
audiotsm.base.tsm (module), 13
audiotsm.gstreamer (module), 19
audiotsm.gstreamer.base (module), 28
audiotsm.gstreamer.ola (module), 20
audiotsm.gstreamer.phasevocoder (module), 21
audiotsm.gstreamer.wsola (module), 20
audiotsm.io (module), 15
audiotsm.io.array (module), 15
audiotsm.io.base (module), 17
audiotsm.io.stream (module), 17
audiotsm.io.wav (module), 16
audiotsm.utils (module), 25
audiotsm.utils.windows (module), 27

C
CBuffer (class in audiotsm.utils), 25
channels (audiotsm.io.base.Reader attribute), 17
channels (audiotsm.io.base.Writer attribute), 17
clear() (audiotsm.base.analysis_synthesis.Converter

method), 24
clear() (audiotsm.base.tsm.TSM method), 13
close() (audiotsm.io.wav.WavReader method), 16
close() (audiotsm.io.wav.WavWriter method), 16
convert_frame() (audiotsm.base.analysis_synthesis.Converter

method), 24
Converter (class in audiotsm.base.analysis_synthesis), 24

create_tsm() (audiotsm.gstreamer.base.GstTSM method),
28

D
data (audiotsm.io.array.ArrayWriter attribute), 15
divide() (audiotsm.utils.CBuffer method), 25
do_sink_event() (audiotsm.gstreamer.base.GstTSM

method), 28
do_transform() (audiotsm.gstreamer.base.GstTSM

method), 28
do_transform_size() (audiotsm.gstreamer.base.GstTSM

method), 28

E
empty (audiotsm.io.base.Reader attribute), 17

F
FixedArrayWriter (class in audiotsm.io.array), 15
flush_to() (audiotsm.base.tsm.TSM method), 13
frame_length (audiotsm.gstreamer.ola.OLA attribute), 20
frame_length (audiotsm.gstreamer.phasevocoder.PhaseVocoder

attribute), 21
frame_length (audiotsm.gstreamer.wsola.WSOLA

attribute), 20

G
get_max_output_length() (audiotsm.base.tsm.TSM

method), 13
GstTSM (class in audiotsm.gstreamer.base), 28

H
hanning() (in module audiotsm.utils.windows), 28

L
length (audiotsm.utils.CBuffer attribute), 25
length (audiotsm.utils.NormalizeBuffer attribute), 27

N
NormalizeBuffer (class in audiotsm.utils), 27

33

audiotsm Documentation, Release 0.1.2

O
OLA (class in audiotsm.gstreamer.ola), 20
ola() (in module audiotsm), 11

P
peek() (audiotsm.utils.CBuffer method), 25
PhaseVocoder (class in au-

diotsm.gstreamer.phasevocoder), 21
phasevocoder() (in module audiotsm), 12
plugin_init() (audiotsm.gstreamer.base.GstTSM class

method), 29
plugin_name (audiotsm.gstreamer.ola.OLA attribute), 20
plugin_name (audiotsm.gstreamer.phasevocoder.PhaseVocoder

attribute), 21
plugin_name (audiotsm.gstreamer.wsola.WSOLA at-

tribute), 20
product() (in module audiotsm.utils.windows), 28

R
read() (audiotsm.io.base.Reader method), 17
read() (audiotsm.utils.CBuffer method), 26
read_from() (audiotsm.base.tsm.TSM method), 13
read_from() (audiotsm.utils.CBuffer method), 26
Reader (class in audiotsm.io.base), 17
ready (audiotsm.utils.CBuffer attribute), 26
register() (audiotsm.gstreamer.base.GstTSM class

method), 29
remaining_length (audiotsm.utils.CBuffer attribute), 26
remove() (audiotsm.utils.CBuffer method), 26
remove() (audiotsm.utils.NormalizeBuffer method), 27
right_pad() (audiotsm.utils.CBuffer method), 26
run() (audiotsm.base.tsm.TSM method), 13

S
samplerate (audiotsm.io.wav.WavReader attribute), 16
samplewidth (audiotsm.io.wav.WavReader attribute), 16
set_analysis_hop() (au-

diotsm.base.analysis_synthesis.Converter
method), 24

set_ready() (audiotsm.utils.CBuffer method), 26
set_speed() (audiotsm.base.tsm.TSM method), 13
skip() (audiotsm.io.base.Reader method), 17
stop() (audiotsm.io.stream.StreamWriter method), 17
StreamWriter (class in audiotsm.io.stream), 17
synthesis_hop (audiotsm.gstreamer.ola.OLA attribute),

20
synthesis_hop (audiotsm.gstreamer.phasevocoder.PhaseVocoder

attribute), 21
synthesis_hop (audiotsm.gstreamer.wsola.WSOLA at-

tribute), 20

T
to_array() (audiotsm.utils.CBuffer method), 26

to_array() (audiotsm.utils.NormalizeBuffer method), 27
tolerance (audiotsm.gstreamer.phasevocoder.PhaseVocoder

attribute), 21
tolerance (audiotsm.gstreamer.wsola.WSOLA attribute),

20
TSM (class in audiotsm.base.tsm), 13

W
WavReader (class in audiotsm.io.wav), 16
WavWriter (class in audiotsm.io.wav), 16
write() (audiotsm.io.base.Writer method), 18
write() (audiotsm.utils.CBuffer method), 27
write_to() (audiotsm.base.tsm.TSM method), 14
write_to() (audiotsm.utils.CBuffer method), 27
Writer (class in audiotsm.io.base), 17
WSOLA (class in audiotsm.gstreamer.wsola), 20
wsola() (in module audiotsm), 12

34 Index

	Installation
	Basic usage
	Thanks
	Indices and tables
	Time-Scale Modification
	Time-Scale Modification procedures
	TSM Object

	Readers and Writers
	Numpy arrays
	Wav files
	Play in real-time
	Implementing your own

	Gstreamer plugins
	OLA
	WSOLA
	Phase Vocoder

	Internal API
	Analysis-Synthesis based TSM procedures
	Circular buffers
	Window functions
	Gstreamer filters

	Python Module Index

